Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Graeme J. Gainsford,* Cornelis Lensink, Andrew Falshaw and Simon P.H. Mee

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

Key indicators

Single-crystal X-ray study
$T=88 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.033$
$w R$ factor $=0.065$
Data-to-parameter ratio $=9.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1L-1-Amino-1-deoxy-2,3,4,5-tetra-O-methyl-scyllo-inositol

In the crystal structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5}$, molecules are linked by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into infinite zigzag chains.

Comment

This study is part of a programme aimed at generating new hydrogenation catalyst ligands (Gainsford et al., 2006, and references therein). The asymmetric unit of the title compound, (I), contains one independent 1L-1-amino-1-de-oxy-2,3,4,5-tetra- O-methyl-scyllo-inositol molecule (Fig. 1). The absolute configuration shown $(1 R, 2 S, 3 R, 4 R, 5 S, 6 R)$ is that determined from the chemical synthesis.

(I)

Two related scyllo-inositol compounds have been reported, viz. BEKNAG (Solomons et al., 1998) and ZOSSEF (Anderson et al., 1995) [CSD refcodes; Version 5.27, with August 2006 updates; Allen, 2002]. Three others based on scyllo-inositol involve fused ring structures, e.g. the isopropylidene adduct TERCIC (Lampe et al., 1996). The inositol ring adopts a slightly flattened chair conformation with $Q=0.556$ (3) $\AA, \theta=174.4$ (3) ${ }^{\circ}$ and $\varphi=168$ (2) $)^{\circ}$ (Cremer $\&$ Pople, 1975). The flattening is seen in the ring torsion angles involving C 4 [average absolute value is $50.5(3)^{\circ}$] and was also noted in BEKNAG. One other minor perturbation involves the normally eclipsed methyl on C3, which has a significant twist about the C3-O3 bond; see Table 1 ($>18^{\circ}$; Anderson et al., 1995). Other distances and angles are normal.

The crystal structure (Fig. 2) is dominated by strong N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, linking molecules by way of an $R_{2}^{2}(10)$ motif (Bernstein et al., 1995). A weaker C$\mathrm{H} \cdots \mathrm{O}$ interaction provides some linking along the a axis (Table 2).

Experimental

1D-3,4,5,6-Tetra- O-methyl-myo-inositol $(2.60 \mathrm{~g}, 11.0 \mathrm{mmol})$, prepared in a similar manner to the tetra- O-benzyl analogue (Wewers et al., 2005), was dissolved in toluene (130 ml) and dibutyltin(IV) oxide $(3.29 \mathrm{~g}, 13.2 \mathrm{mmol})$ was added. The solution was heated to reflux using a Dean-Stark apparatus for 2 h and then the solvent was

Received 26 October 2006 Accepted 30 October 2006

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Packing diagram of (I), viewed down the a axis. Only H atoms involved in hydrogen bonds (dashed lines) are shown. For symmetry codes see Table 2.
removed. Dimethylformamide (80 ml) was added and the solution was cooled to 273 K . Caesium fluoride ($3.35 \mathrm{~g}, 22.0 \mathrm{mmol}$) and benzyl bromide ($2.63 \mathrm{ml}, 22.0 \mathrm{mmol}$) were added; the suspension was stirred at 273 K for 10 min and then at room temperature for 3 h to give $1-O-$ benzyl-3,4,5,6-tetra- O-methyl-myo-inositol ($3.47 \mathrm{~g}, 97 \%$). The benzyl inositol ($3.34 \mathrm{~g}, 10.2 \mathrm{mmol}$) was treated with methanesulfonyl chloride ($3.99 \mathrm{ml}, 51.2 \mathrm{mmol}$) in pyridine $(50 \mathrm{ml})$ overnight at room temperature to give the mesylate ($3.73 \mathrm{~g}, 90 \%$). The mesylate (3.73 g , 9.23 mmol) was then subjected to a displacement reaction using sodium azide ($4.20 \mathrm{~g}, 64.6 \mathrm{mmol}$) in dimethylformamide (37 ml) overnight at 383 K to give the azide ($2.44 \mathrm{~g}, 75 \%$). The azide (2.44 g , 7.51 mmol) was stirred in methanol (100 ml) with 10% palladium on carbon (1.00 g) under one atmosphere of hydrogen at room
temperature for 4 d to give the amino alcohol ($1.31 \mathrm{~g}, 80 \%$). Crystals of the title compound were isolated from dichloromethane.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5}$
$Z=4$
$M_{r}=235.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.7256$ (14) £
$b=12.920$ (3) \AA
$c=14.091(3) \AA$
$V=1224.4(5) \AA^{3}$
$D_{x}=1.276 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=88$ (2) K
Needle, colourless
$0.50 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Bruker-Nonius APEX2 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.888, T_{\text {max }}=1.0$
10832 measured reflections
1471 independent reflections 913 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=26.4^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.065$
$S=0.83$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0338 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$.
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.18$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{O} 1-\mathrm{C} 6$	$1.431(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.475(3)$
$\mathrm{O} 1-\mathrm{H} 1 O$	$0.83(3)$	$\mathrm{N} 1-\mathrm{H} 1 N$	$0.92(3)$
$\mathrm{C} 6-\mathrm{O} 1-\mathrm{H} 10$	$113(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 N$	$111.0(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$-61.4(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$49.8(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$58.1(3)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-51.1(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-53.1(3)$	$\mathrm{C} 8-\mathrm{O} 3-\mathrm{C} 3-\mathrm{H} 3$	36

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.92(3)$	$2.35(3)$	$3.258(3)$	$171(2)$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots 1^{\text {ii }}$	$0.83(3)$	$2.02(3)$	$2.819(3)$	$162(3)$
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.98	2.59	$3.496(3)$	154
Symmetry codes: (i) $-x+\frac{1}{2},-y+2, z-\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{3}{2},-z+1 ;$ (iii) $x+1, y, z$.				

In the absence of significant anomalous scattering effects, Friedel pairs were merged. All carbon-bound H atoms were constrained to their expected geometries (methyl $\mathrm{C}-\mathrm{H}=0.98 \AA$ and methine $\mathrm{C}-$ $\mathrm{H}=1.00 \AA$). Amino and hydroxyl H atoms were freely refined, yielding $\mathrm{N}-\mathrm{H}=0.92$ (3) -0.94 (3) \AA and $\mathrm{O}-\mathrm{H}=0.83$ (3) \AA. All methyl H atoms were free to rotate, except those on C 7 ; the latter were disordered over two sites with refined occupancies of 0.79 (3) and $0.21(3) . U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}$ (parent atom), where $x=1.5$ for methyl and $x=1.2$ for other H atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick,

organic papers

1997); molecular graphics: ORTEP-3 in WinGX (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Anderson, J. E., Angyal, S. J. \& Craig, D. C. (1995). Carbohy. Res. 272, 141148.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gainsford, G. J., Lensink, C. \& Falshaw, A. (2006). Acta Cryst. C62, o650-o652.
Lampe, D., Liu, C., Mahon, M. F. \& Potter, B. V. L. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 1717-1727.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Solomons, K. R. H., Freeman, S., Schwalbe, C. H., Shears, S. B., Nelson, D. J., Xie, W., Bruzik, K. S. \& Kaetzel, M. A. (1998). Carbohydr. Res. 309, 337343.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wewers, W., Gillandt, H. \& Traub, H. S. (2005). Tetrahedron Asymmetry, 16, 1723-1728.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

